ERRATUM for "Calculus of Variations" (Filip Rindler, Springer 2018)

Version of February 28, 2024

- p.13, l.15: Replace $u(x) = Rx + u_0$ by $y(x) = Rx + y_0$ ($y_0 \in \mathbb{R}^3$, R as stated).
- p.14, Fig. 1.4: Replace 2r (on left) by 2R.
- p.24, l.10: For weak metrizability also boundedness of X is needed (but this also follows later from the coercivity).
- p.32, l.-8 (Example 2.12): Replace \mathbb{R}^m by \mathbb{R}^3 .
- p.38, Theorem 2.17: Add the assumption (iv) there is at least one $u \in W_q^{1,p}(\Omega;\mathbb{R}^m)$ with $\mathcal{H}[u] = 0$.
- p.38, l.15 (Theorem 2.17): Replace $\int_{\Omega} f(x, u(x), \nabla u(x)) dx$ by $\int_{\Omega} f(x, \nabla u(x)) dx$.
- p.39, l.5: Replace f by F.
- p.40, l.1: Add the condition dim $X < \infty$.
- p.42, l.1 (Example 2.26): Also assume that $\varphi \geq 0$ and $\varphi(0) = \inf \varphi = 0$.
- p.54, l.-10 (Proposition 3.9): It should additionally be assumed here that $|D_Z D_A f(x, u, A)| \leq C(1+|u|+|A|)$ for $Z \in \{x, u, A\}$ in order for $\text{div}[D_A f(x, u(x), \nabla u(x))]$ to be well-defined (in fact, in (3.6) this existence is assumed).
- p.57, l.2 (Theorem 3.11): This result also holds, with the same proof, for any weak solution $u_* \in W^{1,2}_{loc}(\Omega; \mathbb{R}^m)$ of the corresponding Euler–Lagrange equation (this is used in the bootstrapping argument on p.61).
- p.58, l.-4: $k \in \{1, ..., d\}$ (braces missing).
- p.63, l.-4: Replace $f: \mathbb{R}^{d \times d} \to \mathbb{R}$ by $f: \mathbb{R}^d \to \mathbb{R}$.
- p.65, l.-3 (Theorem 3.21): One also needs to assume $|D_v f(x, v, A)|, |D_A f(x, v, A)| \le C(1+|v|^{p-1}+|A|^{p-1})$ for some C > 0 and $p \in [1, \infty)$ (see Remark 3.2).
- p.69, l.15: f needs to be twice continuously differentiable and we also need to require that $H(\cdot,\tau) \in W^{1,2}(\Omega;\mathbb{R}^m)$ for every $\tau \in \mathbb{R}$.
- p.70, l.7 (Theorem 3.23): The growth bound should read (no p): $|D_v f(x, v, A)|, |D_A f(x, v, A)| \le C(1 + |v| + |A|).$
- p.76, l.11 (Example 3.31): Replace \leq by \geq .
- p.78, l.6 (Exercise 3.2): Delete point (iii).
- p.84, l.13 (Lemma 4.3): Replace $K \subset \mathbb{R}^{m \times d}$ by $K \subset \mathbb{R}^N$.
- p.84, l.15 (Lemma 4.3): Replace (ν_i) by $(\nu^{(j)})$.
- p.85, l.-7 (Theorem 4.4): The family $(\nu_x)_{x\in\Omega}\subset\mathcal{M}^1(\mathbb{R}^N)$ is weakly* measurable with respect to κ .
- p.88, l.3 (proof of Lemma 4.3): Replace "=" by "\le " in front of $\frac{1}{h} \int_{\Omega} \int_{\{A \in \mathbb{R}^N : |A|^{p/2} \geq h\}} h^2 d\nu_x^{(j)}(A) dx$.
- p.88, l.10 (proof of Lemma 4.3): Replace $\lim_{j\to\infty}$ by $\limsup_{j\to\infty}$ (it is only later seen to be a limit).
- p.92, l.2 (Lemma 4.7): Replace $C_0(\Omega) \times C_0(\mathbb{R}^N)$ by $C_0(\Omega \times \mathbb{R}^N)$.
- p.93, l.-6 (Example 4.10): Ω is $(0,1)^2$ everywhere.
- p.97, l.4 (proof of Lemma 4.13): Replace $|\tau_k V_{j(k)}|$ by $|\tau_k V_{j(k)}|^p$.

- p.97, l.10 & l.-10 (proof of Lemma 4.13): Replace v_k by $v_{i(k)}$.
- p.97, l.-12 (proof of Lemma 4.13): Replace V_k by $V_{j(k)}$.
- p.97, l.-11 & p.98, l.3 (proof of Lemma 4.13): Replace $h \in C_0(\mathbb{R}^m)$ by $h \in C_0(\mathbb{R}^{m \times d})$.
- p.103, l.9 (Problem 4.8): Also require $\nu_x(\partial E) = 0$.
- p.111, l.4 (proof of Proposition 5.3): The display should read ($\limsup_{k\to\infty} \|\nabla v_{j,k}\|_{L^{\infty}} \le \limsup_{k\to\infty} \|\nabla u_k\|_{L^{\infty}} + |F| < \infty$.
- p.115, l.10 (proof of Lemma 5.8): Replace $u \mapsto M(\nabla u)$ by $u \mapsto \int_{\Omega} M(\nabla u) dx$.
- p.115, l.15 (proof of Lemma 5.8): Replace " \cdot " by " \otimes ".
- p.116, l.4 (proof of Lemma 5.8): Replace $M_{\neg l}^{\neg k}(\nabla u) = \cdots$ by $(-1)^{k+l} M_{\neg l}^{\neg k}(\nabla u) = \cdots$.
- p.117, l.11 (Lemma 5.10): Replace L^{∞} by $W^{1,\infty}$.
- p.117, l.-11 (proof of Lemma 5.10): Replace $\int_{\Omega} M_{\neg l}^{\neg k}(\nabla u_j)\psi \,dx$ by $(-1)^{k+l}\int_{\Omega} M_{\neg l}^{\neg k}(\nabla u_j)\psi \,dx$; same for the following display.
- p.117, l.10 (proof of Lemma 5.10): The density argument needs to be applied only after the displays $\int_{\Omega} M_{\neg l}^{\neg k}(\nabla u) \psi \, dx \text{ and } -\sum_{l=1}^{3} \int_{\Omega} \left[u^{1} (\operatorname{cof} \nabla u)_{l}^{1} \right] \partial_{l} \psi \, dx = \int_{\Omega} \det \nabla u \, \psi \, dx, \text{ respectively.}$
- p.118, l.-6 & l.-2 (proof of Lemma 5.11): Replace Ω by B(0,1).
- p.120, l.-2 (proof of Theorem 5.13): Replace $v \in \mathbb{R}^n$ by $v \in \mathbb{R}^d$.
- p.120, l.10 (Theorem 5.13 (ii)): Replace $\operatorname{dist}(\nabla u_i(x), \{A, B\})$ by $\operatorname{dist}(\nabla u_i(x), \{A, B\})$.
- p.123, l.11 (proof of Proposition 5.14): $(u_i) \subset W^{1,p}(\Omega; \mathbb{R}^m)$ is a generating sequence for ν .
- p.123, l.-3 (proof of Proposition 5.14): Replace dx by dy.
- p.128, l.2 (Lemma 5.19): The convergence in (5.15) only holds if the sequence $(f(x, u_j, V_j))_j$ additionally is assumed to be uniformly L¹-bounded and equiintegrable (like in Theorem 4.1 (iii)). However (and this is what we use later in the proof of Theorem 5.20), for Carathéodory integrands $f: \Omega \times \mathbb{R}^M \times \mathbb{R}^N \to \mathbb{R}$ satisfying the p-growth bound (5.14), it holds that

$$\liminf_{j \to \infty} \int_{\Omega} f(x, u_j(x), V_j(x)) \, \mathrm{d}x \ge \int_{\Omega} \langle f(x, u(x), \bullet), \nu_x \rangle \, \mathrm{d}x.$$

- p.128, l.-11 (Theorem 5.20): Replace $f: \Omega \times \mathbb{R}^m \times \mathbb{R}^{m \times d} \to \mathbb{R}$ by $f: \Omega \times \mathbb{R}^m \times \mathbb{R}^{m \times d} \to [0, \infty)$.
- p.129, l.1 (Remark 5.21): Replace $q \in [1, p/(d-p))$ by $q \in [1, dp/(d-p))$.
- p.140, l.-3 (proof of Lemma 6.6): Replace C^1 by C^{∞} (or C^2); also several other occurrences throughout this proof.
- p.140, l.-2 (proof of Lemma 6.6): Delete $(-1)^{k+l}$.
- p.141, l.2 (proof of Lemma 6.6): Delete $(-1)^{k+l}$.
- p.147, l.-9 (proof of Theorem 6.9): Replace $x' \in u(\Omega)$ by $x' \in u_*(\Omega)$.
- p.156, l.6/7 (proof of Lemma 7.2): Replace D by B(0,1).
- p.159, l.-10 (proof of Theorem 7.5): A more complete proof is as follows:

The functional \mathcal{F}_* is weakly lower semicontinuous as the supremum of weakly lower semicontinuous functionals. Indeed, if $u_j \rightharpoonup u$ in X, then for all weakly lower semicontinuous $\mathcal{H} \colon X \to \mathbb{R}$ with $\mathcal{H} \leq \mathcal{F}$,

$$\mathcal{H}[u] \leq \liminf_{j \to \infty} \mathcal{H}[u_j] \leq \liminf_{j \to \infty} \mathcal{F}_*[u_j].$$

Taking the supremum over all such \mathcal{H} , we see that $\mathcal{F}_*[u] \leq \liminf_{j \to \infty} \mathcal{F}_*[u_j]$.

Let $(u_j) \subset X$ be a minimizing sequence for \mathcal{F} . By the weak coercivity, we may assume that $u_j \rightharpoonup u_*$ in X. Then,

$$\inf_{X} \mathcal{F} \leq \mathcal{F}[u_*] \leq \liminf_{j \to \infty} \mathcal{F}_*[u_j] \leq \liminf_{j \to \infty} \mathcal{F}[u_j] = \inf_{X} \mathcal{F}.$$

Hence, \mathcal{F}_* attains its minimum, which is equal to the infimum of \mathcal{F} over X.

- p.166, l.7 (Example 7.10): The sentence should read: "However, since rank B=1, we have that $g(\mathbf{P}(A+tB))=0$ is affine in $t \in \mathbb{R}$."
- p.172 ff. (Theorem 7.15): The functional-analytic setup in the proof needs to be changed as follows: Let $\mathcal{M}_p(\mathbb{R}^{m\times d})$ for $p\in(1,\infty)$ denote the class of finite signed measures on $\mathbb{R}^{m\times d}$ with bounded p'th-order absolute moment, that is, $\mathcal{M}_p(\mathbb{R}^{m\times d}):=\{\mu\in\mathcal{M}(\mathbb{R}^{m\times d};\mathbb{R}):\int 1+|A|\,\mathrm{d}\mu(A)<\infty\}$. Then, an integrand $h\in\mathbf{I}^p(\mathbb{R}^{m\times d})$ can be viewed as a linear functional on $\mathcal{M}_p(\mathbb{R}^{m\times d})$ via the duality pairing $\langle \mu, h \rangle := \int h\,\mathrm{d}\mu$ (where $\mu\in\mathcal{M}_p(\mathbb{R}^{m\times d})$). The functionals $h\mapsto\langle \bullet, h \rangle$ (where $h\in\mathbf{I}^p(\mathbb{R}^{m\times d})$) separate the points of $\mathcal{M}_p(\mathbb{R}^{m\times d})$, that is, for $\mu_1, \mu_2\in\mathcal{M}_p(\mathbb{R}^{m\times d})$ with $\mu_1\neq\mu_2$ there is an integrand $h\in\mathbf{I}^p(\mathbb{R}^{m\times d})$ such that $\langle \mu_1, h \rangle \neq \langle \mu_2, h \rangle$.

Let τ_p be the weakest topology on $\mathcal{M}_p(\mathbb{R}^{m\times d})$ that makes all the functionals $h\mapsto \langle \bullet, h\rangle$ continuous. It is a general result of topology (see, e.g., Theorem 3.10 of [W. Rudin: Functional Analysis, McGraw-Hill, 1991]) that the topological space $(\mathcal{M}_p(\mathbb{R}^{m\times d}), \tau_p)$ is a locally convex topological vector space and its dual space $(\mathcal{M}_p(\mathbb{R}^{m\times d}), \tau_p)^*$ is given as $\mathbf{I}^p(\mathbb{R}^{m\times d})$ (via the above duality pairing).

The set $\mathbf{GY}_{hom}^p(F)$ then needs to be viewed as a subset of the space $\mathcal{M}_p(\mathbb{R}^{m\times d})$ (and not of $\mathbf{I}^p(\mathbb{R}^{m\times d})^*$ as before), where it is convex and τ_p -closed (it is not weakly*-closed in $\mathbf{I}^p(\mathbb{R}^{m\times d})^*$ because there is no tightness of the masses, e.g., for $\nu_j = (1-j^{-p})\delta_0 + (j^{-p}\delta_{-jA} + j^{-p}\delta_{jA})/2$ as $j \to \infty$, where A is a rank-one matrix). In Lemma 7.17 and the proof of Theorem 7.15 one thus needs to replace every occurrence of $\mathbf{I}^p(\mathbb{R}^{m\times d})^*$ by $\mathcal{M}_p(\mathbb{R}^{m\times d})$ (effectively moving from a dual to a pre-dual) and use the τ_p -topology instead of the weak* topology everywhere; the arguments are otherwise the same. As a result, Lemma 7.17 then needs to read as follows: "For any $F \in \mathbb{R}^{m\times d}$ the set $\mathbf{GY}_{hom}^p(F)$ is convex and τ_p -closed in $\mathcal{M}_p(\mathbb{R}^{m\times d})$." The application of the Hahn–Banach separation theorem (for locally convex topological vector spaces; see Theorem 3.10 in *loc. cit.*) is then also with respect to the space $(\mathcal{M}_p(\mathbb{R}^{m\times d}), \tau_p)$ and its dual $\mathbf{I}^p(\mathbb{R}^{m\times d})$. [This corrected setup is due to Stefan Müller]

- p.174, l.13 (proof of Lemma 7.17): Replace $u_j \in W^{1,p}(\Omega; \mathbb{R}^m)$ by $u_j \in W^{1,p}(B(0,1); \mathbb{R}^m)$.
- p.178, l.16 (Theorem 7.18): Delete the second "convex".
- p.175, l.1 (proof of Theorem 7.15): The necessity proof also needs to explicitly invoke Proposition 5.14 to localize.
- p.222, l.5 (Lemma 8.32): Replace \rightharpoonup by $\stackrel{*}{\rightharpoonup}$ (in \mathcal{M}_{loc}).
- p.260, l.-3: Replace $K \subset \mathbb{R}^{3 \times 12}$ by $K \subset \mathbb{R}^{3 \times 2}$.
- p.278, l.-12 (Lemma 10.6): Replace μ_0 by μ .
- p.298, l.4 (Problem 10.4): Replace $y \in Q_n(x_0, r)$ by $y \in Q_n(0, 1)$.
- p.326, l.16 (proof of Theorem 11.21): Replace $\geq \mu \|\nabla u_j\|_{L^1}$ by $\geq \mu \cdot \limsup_{j \to \infty} \|\nabla u_j\|_{L^1}$.
- p.372, l.-4: Replace $\liminf_{k\to\infty} \mathcal{F}_k[u_k] = \liminf_{k\to\infty} \inf_X \mathcal{F}_k$ by $\lim_{k\to\infty} \mathcal{F}_k[u_k] = \liminf_{k\to\infty} \inf_X \mathcal{F}_k$.
- p.394, l.-4 (eq. (13.29)): Add $\limsup_{\epsilon \downarrow 0}$ after the first " \leq ".
- p.423, l.-7: Replace $\eta_{\delta}(x) := \frac{1}{\delta^d} \eta\left(\frac{x}{\delta^d}\right)$ by $\eta_{\delta}(x) := \frac{1}{\delta^d} \eta\left(\frac{x}{\delta}\right)$.
- p.426, l.-2 (Theorem A.36): f (not Mf) is Lipschitz on the set $\{M(|f| + |\nabla f|) < K\}$.