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Chapter 2
Convexity

In this chapter we start to develop the mathematical theory that will allow us to
analyze the problems presented in the introduction, and many more. The basic min-
imization problem that we are considering is the following:

Minimize Z[u] := / £l u(x), Vi) d
Q
over all u€ WP (Q;R™) with uly = g.

Here, and throughout the text if not stated otherwise, we will make the standard as-
sumption that Q C R4 is a bounded Lipschitz domain, that is, €2 is open, bounded,
connected, and has a boundary that is the union of finitely many Lipschitz manifolds.
The function

frQxR"xR™4 5 R

is required to be measurable in the first and (jointly) continuous in the second and
third arguments, which makes f a so-called Carathéodory integrand. Furthermore,
in this chapter we (usually) let p € (1,0) and for the prescribed boundary values g
we assume

ge W=I/PP(9Q:R™).

In this context recall that W!=1/7P(9Q;R™) is the space of traces of Sobolev maps
in WhP(Q;R™), see Appendix A.5 for some background on Sobolev spaces.

Below, we will investigate the solvability of the above minimization problem
(under additional technical assumptions). We first present the main ideas of the so-
called Direct Method of the calculus of variations in an abstract setting, namely for
(nonlinear) functionals on Banach spaces. Then we will begin our study of integral
functionals, where we will in particular take a close look at the way in which con-
vexity properties of f in its gradient (third) argument determine whether .% is lower
semicontinuous. We also consider the question of which function space should be
chosen for the candidate functions. Finally, we explain basic aspects of general con-
vex analysis, in particular the Legendre—Fenchel duality.

1
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2 2 Convexity

2.1 The Direct Method

Fundamental to all of the existence theorems in this book is the conceptually simple,
yet powerful, Direct Method of the calculus of variations. It is called “direct” since
we prove the existence of solutions to minimization problems without the detour
through a differential equation.

Let X be a complete metric space (e.g. a Banach space with the norm topology
or a closed and convex subset of a reflexive Banach space with the weak topology).
Let .#: X — RU {+c} be our objective functional that we require to satisfy the
following two assumptions:

(H1) Coercivity: For all A € R, the sublevel set
{u €X : Flu <A } is sequentially precompact,

that is, if .% [u;] < A for a sequence (#;) C X and some A € R, then (u;) has
a converging subsequence in X.
(H2) Lower semicontinuity: For all sequences (1;) C X with u; — u in X it holds
that
F [u] <liminf.Z[u;].
Jore
Note that here and in all of the following we use the sequential notions of com-
pactness and lower semicontinuity, which are better suited to our needs than the
corresponding topological concepts. For more on this point see the notes section at
the end of this chapter.
The Direct Method for the abstract problem

Minimize .% [u] over all u € X 2.1
is encapsulated in the following simple result.

Theorem 2.1. Assume that % is both coercive and lower semicontinuous. Then, the
abstract minimization problem () has at least one solution, that is, there exists a
u, € X with Fu,) =min{ Fu] : ueX}.

Proof. Let us assume that there exists at least one u € X such that % [u] < —+oo;
otherwise, any u € X is a “solution” to the (degenerate) minimization problem.
To construct a minimizer we take a minimizing sequence (u;) C X such that
lim Z[u;] = o :=inf{ F[u] : ucX} < +too.
Jree
Then, there exists a A € R such that % [u j} < A for all j € N. Hence, by the coer-
civity, we may select a subsequence, which we do not make explicit in our notation,

such that
uj — u, €X.

By the lower semicontinuity we immediately conclude that
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2.1 The Direct Method 3

o < Flu,] <liminf F[u;] = o.
Jj—reo

Thus, .7 [u.] = a and u, is the sought minimizer. O

Example 2.2. Using the Direct Method, one can easily see that the lower semicon-

tinuous function
1—t ifr <O,
h(t) = { !

t ift >0,

has the minimizer t = 0.

Despite its nearly trivial proof, the Direct Method is very useful and flexible
in applications. Indeed, it pushes the difficulty in proving the existence of a mini-
mizer into establishing coercivity and lower semicontinuity. This, however, is a big
advantage, since we have many tools at our disposal to establish these two hypothe-
ses separately. In particular, for integral functionals, lower semicontinuity is tightly
linked to convexity properties of the integrand, as we will see throughout this book.

At this point it is crucial to observe how coercivity and lower semicontinuity
interact with the topology on X: If we choose a stronger topology, i.e., one for
which there are fewer converging sequences, then it is easier for .% to be lower
semicontinuous, but harder for .% to be coercive. The opposite holds if we choose
a weaker topology. In the mathematical treatment of a problem from applications,
we are most likely in a situation where .% and the set X are given. We then need
to find a suitable topology in which we can establish both coercivity and lower
semicontinuity. It is remarkable that the topology that turns out to be mathematically
convenient is often also physically relevant.

In this book, X will always be an infinite-dimensional Banach space (or a sub-
set thereof) and we have a real choice between using the strong or weak conver-
gence. Usually, it turns out that coercivity with respect to the strong convergence is
false since strongly compact sets in infinite-dimensional spaces are very restricted,
whereas coercivity with respect to the weak convergence is true under reasonable
assumptions. On the other hand, while strong lower semicontinuity poses few chal-
lenges, lower semicontinuity with respect to weakly converging sequences is a more
delicate matter and we will spend considerable time on this topic.

As aresult of this discussion, we will almost always use the Direct Method in the
following version:

Theorem 2.3. Let X be a reflexive Banach space or a closed affine subset of a re-
flexive Banach space and let & : X — RU {+oo}. Assume the following:

(WH1) Weak coercivity: For all A € R the sublevel set
{ueX : Fu<A} is sequentially weakly precompact,

that is, if Fuj| < A for a sequence (uj) C X and some A € R, then (u;)
has a weakly converging subsequence.
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4 2 Convexity

(WH2) Weak lower semicontinuity: For all sequences (u;) C X with uj — u in X
(weak convergence) it holds that

F[u] < liminf F[u;].

J—re

Then, the problem
Minimize F [u] over all u € X

has at least one solution.

The proof of this theorem is analogous to the proof of Theorem T, also taking
into account the fact that all (strongly) closed affine subsets of a Banach space are
weakly closed.

2.2 Functionals with convex integrands

As a first instance of the theory of integral functionals to be developed in this book,
we now consider the minimization problem for

Flu = /Q F(x,Vu(x)) dx

over all u € lel’(.Q;Rm), where Q C R? is a bounded Lipschitz domain and p €
(1,00) will be chosen later (depending on growth properties of f). The reader is
referred to Appendix A.5 for an overview of Sobolev spaces.

The following lemma shows that the integrand is measurable if f is a so-called
Carathéodory integrand, which from now on we assume.

Lemma 2.4. Let f: Q x RY — R be a Carathéodory integrand, that is,

(i) x = f(x,A) is Lebesgue-measurable for every fixed A € RV,
(ii) A — f(x,A) is continuous for (Lebesgue-)almost every fixed x € Q.

Then, for any Borel-measurable map V:  — RY the composition x — f(x,V(x))
is Lebesgue-measurable.

Proof. Assume first that V is a simple function,

m
V=) vwlg,
k=1

where the sets E; C Q are Borel-measurable (k € {1,...,m}), UL, Ex = 2, and
v € RN, For t € R we have

{xeq: f(x,V(x))>t}=LmJ{x6Ek 2 flxove) >t}
k=1
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2.2 Functionals with convex integrands 5

which is a Lebesgue-measurable set by assumption. Hence, x — f(x,V(x)) is
Lebesgue-measurable.

Turning to the general case, every Borel-measurable function V can be approxi-
mated by simple functions Vj, with

e, Vi(x)) = f(x,V(x)) forallx e Q as k — oo,

see Lemma A.S. We conclude that the right-hand side is Lebesgue-measurable as
the pointwise limit of Lebesgue-measurable functions. a

It is possible that the (compound) integrand in .% is measurable, but that the
integral is not well-defined. These pathological cases can, for example, be avoided
if f > 0 or if one imposes the p-growth bound

[fxA) < MOA+IAP),  (xA) € QxR™,

for some M > 0, which implies the finiteness of .7 [u] for all u € WIP(Q;R™). In
this chapter, however, this bound is not otherwise needed.

We next investigate the coercivity of . If p € (1,00), then the most basic as-
sumption to guarantee coercivity, and the only one we consider here, is the p-
coercivity bound

LA < f(x,A),  (x,A) € Q@ xR™ 2.2)

for some u > 0. This coercivity also determines the exponent p for the Sobolev
space where we look for solutions. Note that in the literature sometimes the coer-
civity bound is given as the seemingly more general u|A|” —C < f(x,A) for some
u,C > 0. This, however, does not increase generality since we may pass from the
integrand f(x,A) to the integrand f(x,A) := f(x,A) +C, which now satisfies (Z2),
without changing the minimization problem (recall that £ is assumed bounded
throughout this book).

Proposition 2.5. If the Carathéodory integrand f: Q x R™*? — [0, ) satisfies the
p-coercivity bound (I2) with p € (1,00), then F is weakly coercive on the space

WP (2R = {ue WP (QiR") : ulyo =g},
where g € WI=1/PP(9Q;R™),
Proof. We need to show that any sequence (u;) C Wé’p (2;R™) with

sup.Z [u;j] < oo
jeN

is weakly precompact. From (Z2) we get

pesup [ |Vugl? dx < sup Fuj| < o,
JEN/Q jeN
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whereby sup; || Vul|Lr < oo. Fix ug € W,? (2;R™). Then, uj—up € W(l)’p(Q;R’”)
and sup; ||V (u; —uo)||Lr < . From the Poincaré inequality, see Theorem A.26 (i),
we therefore get

sup; [luj|lwir < sup;lju; —uollwrr +[[uollwrr < oo

This finishes the proof since bounded sets in separable and reflexive Banach spaces,
like WIP(Q;R™) for p € (1,), are sequentially weakly precompact by Theo-
rem A.2. U

Having settled the question of weak coercivity, we can now investigate the weak
lower semicontinuity. The following pivotal result (in the one-dimensional case)
goes back to the work of Leonida Tonelli in the early 20th century; the generalization
to higher dimensions is due to James Serrin.

Theorem 2.6 (Tonelli 1920 & Serrin 1961 [242,276]). Let f: Q X Rmxd _y [0,0)
be a Carathéodory integrand such that

f(x,+) is convex for almost every x € Q.
Then, .F is weakly lower semicontinuous on WP (Q;R™) for any p € (1,00).

Proof. Step 1. We first establish that .# is strongly lower semicontinuous, so let
uj — uin WHP(Q;R™) and Vu; — Vu almost everywhere, which holds after se-
lecting a subsequence (not explicitly labeled), see Appendix A.3. By assumption
we have that f(x, Vu;(x)) > 0. Applying Fatou’s Lemma, we immediately conclude
that

Flul = / f(x,Vu(x)) dx < liminf | f(x,Vu;(x)) dx = liminf .7 [u;].
Q J—7 JQ J—roo

Since this holds for all subsequences, it also follows for our original sequence, see
Problem .
Step 2. To prove the claimed weak lower semicontinuity take (u;) C WP (Q;R™)
with u; — u in W7, We need to show that
Fu] < liminf Z [u;] =: a. (2.3)
Jjreo
Taking a subsequence (not explicitly labeled), we can in fact assume that .7 [u;]

converges to .
By the Mazur Lemma A.4 we may find convex combinations

NG) , NG)
V= Z G,EJ)M,,, where 6,5’) €[0,1] and Z 9r51> -1,
n=j n—j

such that v; — uin W', As f(x,+) is convex for almost every x,
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n=j
NG)
<Y 04 F[uy)
n=

Since #[u,] — o as n — o and zﬁ}’g G,ED =1, we arrive at

liminf #[v;] < a.
j—reo ’
On the other hand, from the first step and since v; — u strongly, we have .# [u] <
liminf;_,...% [v;]. Thus, (Z3) follows and the proof is finished. O

We can summarize our findings in the following existence theorem.

Theorem 2.7. Let f: Q x R™? — [0,00) be a Carathéodory integrand such that

(i) f satisfies the p-coercivity bound (Z2) with p € (1,0);
(ii) f(x,+) is convex for almost every x € Q.

Then, the associated functional F has a minimizer over W;,’p (Q2;R™), where g €
WI=l/Pr(9Q;R™).

Proof. This follows immediately from the Direct Method for the weak convergence,
Theorem 3 with X := W;’p (Q;R™) together with Proposition 3 and the Tonelli—
Serrin Theorem 6. O

Example 2.8. The Dirichlet functional (or Dirichlet integral) is
a . 1 2 1,2 .M
Flu| = 2\Vu(x)| dx, ue W= (Q;R").
Q

We already encountered this integral functional when considering electrostatics in
Section 1.3. It is easy to see that the Dirichlet functional satisfies all requirements
of Theorem 1 and so there exists a minimizer for any prescribed boundary values

g EW/22(9Q;R™).
We next show the following converse to the Tonelli-Serrin Theorem [Z8:

Proposition 2.9. Let .7 : W'/ (Q;R™) — R, p € [1,), be an integral functional
with continuous integrand f: R™¢ — R (not x-dependent). If F is weakly lower
semicontinuous on WP (Q;R™) and if either m = 1 or d = 1 (the scalar case and
the one-dimensional case, respectively), then f is convex.

Proof. We only consider the case m = 1 and d arbitrary; the other case is proved
in a similar manner. Assume that a,b € R with a # b and 6 € (0,1). Let v :=
0a+ (1—6)b,n:=b—a, and set
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Fig. 2.1 The function @g A

)Y ES— 5

1
uj(x) :==v-x+-@(jx-n—Ljx-n]), x€Q,
J
where |s| denotes the largest integer less than or equal to s € R, and

_J=(1—e) iftecl0,0),
wlt)= {ez—e ifre[6,1),

see Figure 1. We have that

Vi (x) 0a+(1-0)b—(1—-06)(b—a)=a ifjx-n—|jx-n]€]0,0),
uj(x) =

! Oa+(1—0)b+6(b—a)=h if jx-n—|jx-n| €[0,1).
Hence, (1;) C W'*(Q) and since the second term in the definition of u; converges
to zero uniformly, it holds that u; — v-x in whr (here and in the following, “v-x”
is a shorthand notation for the linear function x — v - x). By the weak lower semi-
continuity, we conclude that

|21/ (v) = Z[v-x] < liminf Z[u;] = |2 - (8/(a) + (1~ 6)f(1)).

This proves the claim. a

In the vectorial case, i.e., m # 1 and d # 1, it turns out that convexity of the
integrand (in the gradient variable) is far from being necessary for weak lower semi-
continuity. In fact, there is indeed a weaker condition ensuring weak lower semicon-
tinuity; we will explore this in Chapter 5.

Finally, we prove the following result concerning the uniqueness of the mini-
mizer.

Proposition 2.10. Let 7 : W' (Q;R") = R, p € [1,), be an integral functional
with Carathéodory integrand f: Q x R"*4 — R. If f is strictly convex, that is,

f(x,6A4(1-0)B) < 6f(x,A)+(1—6)f(x,B)
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2.3 Integrands with u-dependence 9

for all x € Q, A,B € R™? with A # B, 6 € (0,1), then the minimizer u, €
W;’p(.Q;Rm) (g€ Wl_l/p’p(a.Q;Rm)) of &, if it exists, is unique.

Proof. Assume there are two different minimizers u,v € Wi,‘p (Q;R™) of .%. Then
set

1 1 L. )
wi= §u+ FVE WP (Q;R™)

and observe that

1 1 1 1 .
Fw] :/ f(x, ~Vu(x)+ va(x)) < =ZFul+=Fp= mn ZF,
0 2 2 2 2 W;’I)(Q;R’")
yielding an immediate contradiction. O

2.3 Integrands with u-dependence

If we try to extend the results in the previous section to more general functionals

Flu = | (o), V(o) d

we discover that our proof strategy via the Mazur lemma runs into difficulties: We
cannot “pull out” the convex combination inside

N() ) N() )
/ flx Z 0" (%), Z 00"’ Vu, (x) | dx
@ n=j n=j
any more. Nevertheless, a lower semicontinuity result analogous to the one for the

u-independent case turns out to be true:

Theorem 2.11. Let f: Q x R™ x R"™*4 —; [0,00) be a Carathéodory integrand,
which here means that

(i) x = f(x,v,A) is Lebesgue-measurable for every fixed (v,A) € R™ x R4
(ii) (v,A) — f(x,v,A) is continuous for (Lebesgue-)almost every fixed x € Q.

Assume also that
F(x,v,+) is convex for every (x,v) € Q x R™.

Then, for p € (1,0), the functional
Tl ::/ Flnu(x),Vu(x) dv,  ue WP(Q;R™),
Q

is weakly lower semicontinuous.

Filip Rindler: Calculus of Variations — Springer 2018 — www _calciilnsofvariations. con



http://www.calculusofvariations.com

10 2 Convexity

While it would be possible to give an elementary proof of this theorem here, we
postpone the detailed study of integral functionals with u-dependent integrands until
Section 5.6. There, using more advanced techniques, we will establish a much more
general lower semicontinuity result, albeit under an additional p-growth assumption
|[f(x,m,A)] < M(1+|v|” +|A|”). A proof of the above theorem without this growth
assumption can be found in Section 3.2.6 of [[Z6].

Example 2.12. In the prototypical problem of linearized elasticity from Section 1.7
we are tasked to solve
L 1 2 2 2
Minimize Z[u]:= 3 / 2u|Eul” 4+ (K— gu)|tréau| —b-udx
Jo

over all ue WH(Q:R?) with u|yq = g,
where u,k >0, b € L2(2;R?), and g € W'/22(9Q;R™). It is clear that . has
quadratic growth. We assume that kK — 24 /3 > 0 and g = 0 for simplicity. Then, we

first show that
IVullp2 < V2| Eull2 24

for all u € W'2(Q;R?) with u|y, = 0. This can be seen as follows: An elementary
computation shows that for ¢ € C*(€2;R?) it holds that

2EQ:E9)—Vo: Vo =div[(Vo)e — (dive)e] + (dive)®.

Thus, by the divergence theorem,
201691~ Vol = [ div[(Vo)p—(dive)p] dr-+ [ (dive) ds

:/ (dive)? dx
Q0
>0

This is (Z4) for ¢. The general case follows from the density of C*(2;R?) in
W(l)’z(.Q;R3). Then, using Young’s inequality and the Poincaré inequality (see The-
orem A.26 (i), we denote the L2-Poincaré constant by Cp > 0), we get for any 6 > 0,

Flu) > plEulZs — ]2l 2
1 )

5 7|

Ch

u 1 1)
> B Va2, — o2 lbIR: — 22Vl

2 2 2
> pl[Eulli2 = 55 11PlT2 = 5 [lulli2

Choosing & = 1/(2C3), we obtain the coercivity estimate

C2
Pl = G IVl = L bl

Filip Rindler: Calculus of Variations — Springer 2018 — www _calciilnsofvariations. con



http://www.calculusofvariations.com

2.4 The Lavrentiev gap phenomenon 11

Hence, applying the Poincaré inequality again, .Z [u] controls ||u||y:2 and our func-
tional is weakly coercive. Moreover, it is clear that the integrand is convex in the & u-
argument. Hence, Theorem Il yields the existence of a solution u, € WI*Z(Q ; ]R3)
to our minimization problem of linearized elasticity. In fact, one could also argue
using the Tonelli-Serrin Theorem 2@ and the elementary fact that the lower-order
term [, b(x) - u(x) dx is weakly continuous on W'-2. More on the topic of linearized
elasticity can be found in Sections 6.2 and 6.3 of [b4].

2.4 The Lavrentiev gap phenomenon

We have chosen the function space in which we look for the solution of a minimiza-
tion problem from the scale of Sobolev spaces according to a coercivity assumption
such as (Z2). However, at first sight, classically differentiable functions may appear
to be more appealing. So the question arises whether the infimum value is actually
the same when considering different function spaces. Formally, given two linear or
affine spaces X C Y such that X is dense in Y, and a functional .7 : ¥ — RU {40},
we ask whether

inf.# =inf #.

X Y

Note that even if the infima agree, it is a priori unlikely that this infimum is attained
in both spaces unless we have additional regularity of a minimizer (which we will
investigate in Section 3.2).

For X = C* and Y = W' the equality of infima turns out to be true under suitable
growth conditions:

Theorem 2.13. Let f: Q x R™ x R™*? 5 R be a Carathéodory integrand with p-
growth, i.e.,

FenA) S MO+ PP +IAP),  (61A) € 2 xR < R,

Sfor some M > 0, p € [1,00). Then, the functional
Pl = [ Flou) ety ue W@,
Q

is strongly continuous. Consequently,

inf. %= inf Z.
Whe(Q;Rm) C=(Q;Rm)

The same equality of infima also holds with fixed boundary values.

Proof. Letu; — uin WH?(Q;R™) and additionally assume that u; — u, Vu; — Vu
almost everywhere (which holds after selecting a subsequence). Then, from the p-
growth assumption we get
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12 2 Convexity
Flu) = [ Fu V) dr< [ MO+ g+ [Vl s
and via Pratt’s Theorem A.10 we infer that
Fluj) = Ful.

Since this holds for a subsequence of any subsequence of the original sequence (u;),
we have established the continuity of .% with respect to the strong convergence in
Whr(Q;R™).

The assertion about the equality of infima now follows readily since C*(Q;R™)
is dense in W'”(Q;R™). The equality of the infima under an additional boundary
value constraint follows from the continuity of the trace operator under the W!-”-
convergence, see Theorem A.24, and the fact that any map in W1=p(Q;R’”) can
be approximated with smooth functions with the same boundary values, see Theo-
rem A.29. U

If we dispense with the p-growth assumption, however, the infimum over differ-
ent spaces may indeed be different — this is called the Lavrentiev gap phenomenon,
discovered in 1926 by Mikhail Lavrentiev. Here, we give an example between the
spaces W' and W' (with boundary conditions):

Example 2.14 (Mania 1934 [I[75]). Consider the minimization problem

1
Minimize % [u] = / (u(r)® = 1)2a(r)° dr
0
subjectto  u(0) =0, u(l) =1
for u from either W!1(0, 1) or W(0, 1). We claim that

inf # < inf 7|
whi(o,1) wle(0,1)

where here and in the following these infima are to be taken only over functions u
with boundary values u(0) =0, u(1) = 1.

Clearly, .# > 0, and for u,(t) :=t'/> € (W' \ W')(0,1) we have .Z#[u,] = 0.
Thus,

inf % =0.

wl1(0,1)

On the other hand, every u € W'(0,1) is Lipschitz continuous. Thus, also using
u(0) =0, u(1) = 1, there exists a 7 € (0, 1) with

Ve
u(t) <h(r):= - forall 7 € [0, 7] and u(t) = h(7).

Then, u(t)? —t < h(t)*> —t fort € [0, 7] and, since both of these terms are negative,
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2.4 The Lavrentiev gap phenomenon 13

2

(Wt — 1) > (h(r) — 1) = %tz forall £ € [0, 7).

We then estimate

Flu] > ./Or(u(t)3 —ORa(r) dr > ;;/()Tzzu(z)é dr.

Further, by Holder’s inequality,

/(:u(t) dt:/orfl/3-t1/3u(t) dr
< (/(:t2/5 dt)S/G. </Ort2u(t)6 dt)

55/6 . T 1/6
_ /2 2 .0\6
= 35567 (/0 - u(t) dt)

1/6

Since also

T 71/3
/ i(t) dr = u(t) — u(0) = h(z) =
0 2
we arrive at - sas
723 723
Tl = 55367 > g5
Thus,

inf %> inf %,
Wle(0,1) wLi(0,1)

and .% can be seen to exhibit the Lavrentiev gap phenomenon.

In a more recent example, Ball & Mizel [B4] showed that the problem

1
Minimize % |u] ::/I(t4—u(t)6)2|u(t)\2m+£u(t)2 dr

subjectto u(—1)=oa, u(l)=J

also exhibits the Lavrentiev gap phenomenon between the spaces W2 and W1 if
m € N satisfies m > 13, € > 0 is sufficiently small, and —1 < o < 0 < 8 < 1. This
example is significant because the Ball-Mizel functional is coercive on lez(— 1, 1)
thanks to the second term of the integrand.

We note that the Lavrentiev gap phenomenon is a major obstacle for the nu-
merical approximation of minimization problems. For instance, standard (piece-
wise affine) finite element approximations are in W' and hence in the presence
of the Lavrentiev gap phenomenon (between W!» and W') we cannot approxi-
mate the true solution with such finite elements. Thus, one is forced to work with
non-conforming elements and other advanced schemes. This issue does not only
affect “academic” examples such as the ones above, but is also of great concern in
applied problems, such as nonlinear elasticity theory.
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2.5 Integral side constraints

In some minimization problems the class of candidate functions is restricted to in-
clude one or more integral side constraints. To establish the existence of a minimizer
in these cases, we first need to extend the Direct Method to this scenario.

Theorem 2.15. Let X be a Banach space or a closed affine subset of a Banach space
and let F , 7. X — RU{+oo}. Assume the following:

(WH1) Weak coercivity of % : For all A € R the sublevel set
{ ueX : Fu <A } is sequentially weakly precompact,

that is, if F[uj] < A for a sequence (uj) C X and some A € R, then (u;)
has a weakly converging subsequence.
(WH2) Weak lower semicontinuity of .7 : For all sequences (u;) C X with uj — u
in X it holds that
F [u] < liminf F[u;].

J—roo
(WH3) Weak continuity of 7 : For all sequences (uj) C X withu; — uin X it holds
that
Huj| — A (ul.

Assume also that there exists at least one ug € X with 7€ [ug] = 0. Then, the mini-
mization problem

Minimize .7 [u] over all u € X with 7€ [u] =0

has a solution.

Proof. The proof is almost exactly the same as the one for the standard Direct
Method in Theorem 3. The only difference is that we need to select the u; for
a minimizing sequence with .7 [u;] = 0. Then, by (WH3), this property also holds
for any weak limit u, of a subsequence of the u;’s, which then is the sought mini-
mizer. a

A large class of side constraints can be treated using the following simple result.

Lemma 2.16. Let h: Q x R™ — R be a Carathéodory integrand and let p € [1,00)
such that there exists an M > 0 with

h(e)| <M+, (ry) € Q@ xR, 2.5)

for some q € [1,dp/(d — p)) if p < d, or no growth condition if p > d. Then, the
functional 7 : WP (Q;R™) — R defined through

Al ::/Qh(x,u(x))dx, e WP (Q;R"),

is weakly continuous.
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2.6 The general theory of convex functions and duality 15

Proof. We only prove the lemma in the case p < d. The proof for p > d is analogous,
but easier.

Letu; — uin WP (Q;R™), whereby after selecting a subsequence and employ-
ing the Rellich-Kondrachov Theorem A.28 and Lemma A.8, u; — u in L? and al-
most everywhere. By assumption we have

+h(x,v)+M(1+|v|?) > 0.

Thus, applying Fatou’s lemma separately to these two integrands, we get

liminf(:t%ﬂ[uj]+/-QM(1+|u‘,-|q)dx) zi%[uH/QM(lﬂuw) dx.

e

Since ||uj{|Ls — ||u||Ls, We can combine these two assertions to get 52 [u ;] — S [u].
This holds for a subsequence of any subsequence of (u;), hence it also holds for our
original sequence. a

Combining this lemma with Theorems 74 and ZI3 and also the Rellich—
Kondrachov Theorem A.28, we immediately get the following existence result.

Theorem 2.17. Let f: Q x R™¢ — [0,00) and h: Q x R™ — R be Carathéodory
integrands such that

(i) f satisfies the p-coercivity bound (I2), where p € (1,00);
(ii) f(x,+) is convex for all x € Q;
(iii) h satisfies the g-growth condition (I3) for some q € [1,dp/(d — p)) if p < d,
or no growth condition if p > d.
Then, there exists a minimizer u, € Wy (Q;R™), where g € W'=1/PP(9Q;R™), of
the functional

Flu] = / f(xu(x), Vu(x)) dx, ue W;,”’(S’);IR’")7
JQ
under the side constraint

Al ::/Qh(x,u(x)) dx=0.

2.6 The general theory of convex functions and duality

We finish this chapter by briefly considering the general theory of convex functions.

In all of the following let X be a (real) reflexive Banach space (finite or infinite-
dimensional) with dual space X*, see Appendix A.2. We denote by (x,x*) = x*(x)
the duality product between x € X and x* € X*. For a set A C X we write coA, COA
for its convex hull and closed convex hull, respectively. These hulls are defined
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to be the smallest (closed) convex set containing A, or, equivalently, the intersec-
tion of all (closed) convex sets containing A. For A C X we furthermore define the
characteristic function y4: X — RU{+} as

(x) 1 ) 0 if x €A,
X) 1= -1=
xa too ifx ¢ A.

Let F: X — RU {+eo}. The function F is called proper if it is not identically
+o0. We define the effective domain dom F' C X and the epigraph epiF C X xR
of F as follows:

domF :={x€X : F(x) <o},
epiF :={(x,@) EXXR : a>F(x)}.

It can be shown (see Problems I, D7) that F is convex if and only if epiF is
convex (as a set), and that f is (sequentially) lower semicontinuous if and only if
epi F is (sequentially) closed; this holds with respect to both the strong and the weak
convergence.

Lemma 2.18. [fdim X < oo, then every convex function F : X — RU{+eo} is locally
bounded on the interior of its effective domain.

Proof. If x € X is in the interior of the effective domain of F, then x lies in the convex
hull co{xi,...,x,41} of n+ 1 affinely independent points x; (i.e., ¥ agx; = 0 for

some o € R with Y, o = 0 implies a; = 0p = -+ = 04,11 = 0) with F(x;) < +oo,
where n = dimX. Thus, there exists an open ball around x inside co{xi,...,x,+1}
on which F is bounded by sup{F (x1),...,F(xn+1)} O

Lemma 2.19. Let o be a non-empty family of continuous affine functions a(x) =
(x,x*) 4+ o for some x* € X*, a € R. Then, F: X — RU{+4oo} defined through

F(x) := sup a(x)
acd

is convex and lower semicontinuous. Conversely, every convex and lower semicon-
tinuous function can be written in this form.

Proof. The convexity of F is clear since all the affine functions a € <7 are in partic-
ular convex. For the lower semicontinuity we just need to realize that the pointwise
supremum of continuous functions is always lower semicontinuous. Indeed, for a
sequence x; — x in X we have for all 4 € ./ that

d(x) = lim d(x;) < liminf sup a(x;) = liminf F (x;).
J—roo J—roo aGQ{ J—roo
Taking the supremum over all @ € .27, the lower semicontinuity follows.
For the converse, we may assume that F' is proper; otherwise the result is triv-
ial. Let x € X with F(x) < 4eo. The epigraph epiF of F' is closed and convex by
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Fig. 2.2 The convex conju- A

gate 7 gl/; 7
%

\4

assumption. Hence, by the Hahn—Banach Separation Theorem A.1, for every x € X
and every B < F(x) we can find an affine function a, g: X — R whose graph sep-
arates the point (x, ) from epiF. In particular, B < a, g(x) < F(x) and a,g lies
everywhere below the graph of F. Letting 8 1 F(x), we arrive at

F(x)=sup{a,p(x) : (x,B) € X xRwith f <F(x)}.

A similar argument also applies if F(x) = +oco. Collecting all these a, g for (x, ) €
X xR with B < F(x) into the set <7, the conclusion follows. O

Proposition 2.20. Every proper convex function is continuous on the interior of its
effective domain.

We will prove this in more generality later, see Lemma 5.6 in conjunction with
Lemma ZTR.

One important object in the general theory of convex functions is the (convex)
conjugate, or Legendre-Fenchel transform, F*: X* — RU {+oco} of a proper
function F': X — RU {+eo} (not necessarily convex), which is defined as follows:

F*(x*) :=sup [(x,x") = F(x)], x"eX".
xeX
Of course, we may restrict to x € domF in the supremum. The intuition here is
that for a given x* we may consider all affine hyperplanes with normal x* (recall
that all hyperplane normals are elements of X*) that lie below epi F. Then, —F*(x*)
is the supremum of the heights at which these hyperplanes intersect the (vertical)
(RU {+oo})-axis, see Figure I2. Indeed, let & € R be such that F(x) > (x,x*) —
for all x € X. Then, o > (x,x*) — F(x) for all x € X, so the highest supporting
hyperplane with normal x* is x — (x,x*) — F*(x*), which intersects the vertical axis
in —F*(x*).
The following Fenchel inequality is immediate from the definition:

(x,x*) < F(x)+F*(x"), forallx € X, x* € X*. (2.6)

We next collect some properties of the conjugate function:
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Proposition 2.21. Let F,G: X — RU{+o} be proper and F*,G*: X* — RU{+o0}
be their conjugates.

(i) F* is convex and lower semicontinuous.
(ii) F*(0) = —infF.
(iii) If F < G, then G* < F*.
(iv) If for & > 0 we denote by F), the scaled function F) (x) := F (Ax), then F; (x*) =
F*(x*/A).
(v) (AF)*(x*) = AF*(x*/A) forall A > 0.
(vi) (F+y)*=F*—vyforallyeR.
(vii) If for a € X we denote by F, the translated function F,(x) := F(x — a), then
Fg(x") = F*(x") + (a,x").

Proof. The first assertion follows from Lemma ZT9, all the others are straightfor-
ward calculations, see Problem ZR. O

We now consider a few canonical examples of convex functions.

Example 2.22 (Support function). Let x4 be the characteristic function of A C X.
Then, for the conjugate function we get

ou(x") == yx(x") =sup(x,x7),  x"e€X,
XEA

which is called the support function of A. It is always convex, lower semicontin-
uous, and positively 1-homogeneous, i.e., os(ax*) = acy (x*) for all x* € X* and
o > 0, see Problem Z9.

Example 2.23. Let p,q € (1,00) with 1/p+1/¢q = 1, that is, p,q are conjugate ex-
ponents. Then,

1 1
o) :=—|t]P and 0*(r) := —|t]9, t €R,
(t) pll (t) qH

are conjugate. From the Fenchel inequality (28) we recover the Young inequality

VRN
xygx——i—y— for all x,y > 0.
P q

Example 2.24. For the absolute value function @(¢) := |t| we get

0 iffy <1,

. teR. 2.7)
Hoo if £ > 1,

O (t) =21 (1) = {

Example 2.25. The conjugate of the exponential function is

+oo ift <0,
exp (t) =<0 iftr=0, teR.
tlnt—t ifr >0,
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In this case, (Z6) gives the inequality
xy <exp(x)+ylny—y for all x,y > 0.

Example 2.26. Let ¢ : R — RU{+o0} be proper, convex, and lower semicontinuous,
and let ||+]|, ||+||« be the norms on X and on X*, respectively. Then the functions

Gx):=o(lxl) and  G("):=@ (|X[ls), xeX, ¥ eXT,

are conjugate. In particular, ||+||”/p and ||+||?/q for 1/p+1/q = 1 are conjugate.
The verification of these statements is the task of Problem ZT0.

Example 2.27. Let X = R" and let S € R"*" be a symmetric, positive definite matrix.
Then,

1 1
F(x):= ExTSx and F*(y):= EyTS*ly7 x,y €R",

are conjugate.

Iterating the construction of the conjugate, we denote by F**: X — RU {+oo}
the biconjugate of F, that is, the function

F*(x):= sup [(x,x") —F*(x")], xeX.
x*eX*

Proposition 2.28. The biconjugate F** is the convex, lower semicontinuous en-
velope of F, that is, the greatest convex, lower semicontinuous function below F.
Moreover, F** = F*.

Proof. For the moment denote the convex lower semicontinuous envelope of F' by
Foise,

Fiise(x) :=sup { H(x) : H <F convex, lower semicontinuous }, xeX.

Also define
G(x) :=sup{a(x) : a <F affine }, xeX.

Since G < F is convex and lower semicontinuous by Lemma IZT9, G < F .. On
the other hand, for every convex and lower semicontinuous H from the definition
of Fs, we have H(x) = sup,c,, b(x) for a collection of affine functions b < H,
again by the said lemma. However, b < F for all b € &/ and thus b is included in the
collection in the definition of G. Hence, H < G, whereby F;sc < G. In conclusion,
Fase =G.

Every affine a < F has the form a(x) = (x,x*) — a for some x* € X* and o €
R. We can restrict ourselves to such a with o minimal while still preserving the
property a < F. We see first that a < F if and only if & > (y,x*) — F(y) forally € X.
According to the definition of the conjugate function, this condition is nothing else
than
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a > F*(x").

Thus, ¢ is minimal when o = F*(x*) and we get

Fase(x) = Glx) = sup. [(ex") —F*(x")] =F"(x), x€X.

For the second assertion it suffices to observe that F* is convex and lower semi-
continuous by Proposition 721 (i) and to apply the first assertion. a

As a particular consequence of the preceding result, we see that conjugation fa-
cilitates a bijection between the proper, convex, and lower semicontinuous functions
on X and those on X*, which is self-inverse in the sense above.

Corollary 2.29. epi F** =coepiF.

Proof. The process of taking the convex lower semicontinuous envelope of F
amounts to finding the closed convex hull of the epigraph. ad

Example 2.30. For the characteristic function 4 of A C X we get
= 04 = XcoA-

In particular, A and coA have the same support function.

Notes and historical remarks

The basic ideas concerning the Direct Method as well as lower semicontinuity and
its connection to convexity are due to Leonida Tonelli and were established in a
series of articles in the early 20th century [Z75-277]. In the 1960s James Serrin
generalized the results to higher dimensions [2472].

Most of the material in this chapter is very classical and can be found in a variety
of books on the calculus of variations, we refer in particular to [[Z6, 77, T37]. We
note that a very general lower semicontinuity theorem for convex integrands can be
found in Theorem 3.23 of [[ZA].

All of our abstract results on the Direct Method are formulated using sequences
and not using general topology tools like nets. This is justified since the weak topol-
ogy on a separable, reflexive Banach space and the weak*-topology on a dual space
with a separable predual are metrizable on norm-bounded sets. Thus, if the func-
tionals under investigation satisfy suitable coerciveness assumptions, one can work
with sequences. The only case where one has to be careful is when one uses the
weak topology on a non-reflexive Banach space with a non-separable dual space
because then the weak topology might not be metrizable. For instance, in the se-
quence space /! (with non-separable dual space [*°), weak convergence of sequences
is equivalent to strong convergence, but the weak and strong topologies still differ
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(see Chapter V in [[74] for more details on such considerations). For us more rel-
evant is the observation that norm-bounded sets in L' () are not weakly precom-
pact, either sequentially or topologically (these notions turn out to be equivalent by
the Eberlein—Smulian theorem). This corresponds to functionals with linear growth,
which indeed require a more involved analysis in the space of functions of bounded
variation (BV). We will come back to this topic in Chapters 10—12.

For the u-dependent variational integrals the growth in the u-variable can be im-
proved up to g-growth, where ¢ € [1,p/(p — d)) by the Sobolev embedding theo-
rem. Moreover, we can work with the more general growth bounds |f(x,v,A)| <
M(h(x)+|v|7+ |A|P), with h € L' (€;[0,0)) and ¢ € [1, p/(p — d)). For reasons of
simplicity, we have omitted these generalizations here.

The Lavrentiev gap phenomenon was discovered in [[75], our Example T4
is due to Mania; we follow the description in [[CTZ]. Tonelli’s Regularity Theo-

nomenon, for some integral functionals with superlinear growth; also see [2Y, 40—
43] for some recent developments in this direction.

Much of the theory of general convex functions was developed by Jean-Jacques
Moreau and R. Tyrrell Rockafellar in the 1960s. The books [T0A,?37] and the more
advanced monographs [[972, 193, 233] develop these topics in great detail.

Problems

2.1. Let #: X — R, where X is a complete metric space. Show that if every subse-
quence of the sequence (u;) C X with u; — uin X has a further subsequence (u ) )«
such that
3‘\[1,{] < liminfgz[uj(k)],
—3o0
then also
Fu] < liminf % [u;].

J=ee

2.2. Let Q C R be a bounded Lipschitz domain. Define
Ve {MEW1’2(Q) : / u(x)de}.
Q

Assume furthermore that f: Q x R? — R is continuously differentiable with
RAP? < f(x,A) for some y > 0 and all (x,A) € 2 x RY,
IDAf(x,A)] <M(1+|A]?)  forsome M > 0 and all (x,A) € Q x R,

and that A — f(x,A) is convex for all x € Q. Finally, let g € L>(Q). Consider the
following minimization problem:
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22 2 Convexity
Minimize Z[u] := / F(x,Vu(x)) — g(x)u(x) dx
Q
over all ucv.
(i) Show that .% is coercive on V, that is, there exists a i > 0 such that

1

Z [u] ZHHMH%VM—/.F forallu e V.

(i1) Show that .# is also weakly lower semicontinuous on V (weak convergence in
W'2) and hence there exists a minimizer u, € V of .% (minimized over V).

This problem is continued in Problem 3.9 in the next chapter.

2.3. Show that the function f: R? — R given by f(x,y) = xy is separately convex,
that is, x — f(x,y) is convex for fixed y € R and y — f(x,y) is convex for fixed
x € R, but f is not convex.

2.4. Let f: RY — [0,0) be twice continuously differentiable and assume that there
are constants (U, M > 0 with

b|> <D?*f(a)[b,b] <M|b]>  foralla,bec R
u

where
2

d
D2 f(a)[b,b] := g3/ (a+b) for all a,b € RY.
t=0

Show that f is convex and that | f(v)| < C(14|v|?) for some C > 0 and all v € R9.

2.5. Let f: R? — R be convex and fix xo € R?. Set

M := l_zllll‘fﬂ_l.{i’d(|f(xo+e;) — f(xo)|,|f(xo —ei) — f(x0)]).

Prove that if y € R satisfies [y|; := |y1|+---+ |ya| < 1, then f(xo+y) — f(x0) < M.
2.6. Show that F: X — RU{+oo} is convex if and only if epi F is convex (as a set).

2.7. Show that F: X — RU {+oe} is (sequentially) lower semicontinuous if and
only if epi F is (sequentially) closed.

2.8. Prove the statements of Proposition =21
2.9. Verify the statements in Example 22 about the support function.

2.10. Prove the assertion in Example Z28.
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